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Abstract-Using the Graetz problem with axial conduction as an illustrative example a method for 
solution of an important class of linear partial differential equations is developed. The method is a 
combination of orthogonal collocation and matrix d~agonali~tion. The reason for the very high 
accuracy, which is obtained by cotlocation, is discussed in terms of the eigenvalues of the collocation 
operator. These are found to increase much faster than the true eigenvalues for k > N/2 where N is the 
number of collocation points, and this permits a high accuracy also in the “penetration region” of the 
solution where Fourier Series are slowly convergent. 

Explicit formulas for the asymptotic ~~-number for large and small Pe-numbers are developed in an 
appendix. They are based on a perturbation of the eigenfunctions of the simplified model with either 
infinite or zero Penumber. 

A number of variants of the Graetz problem, which can be solved by a repetition of the present 
computations, are proposed. 

NOMENCLATURE 

dis~retization matrix for @3x; 
discretization matrix for d2/ax2; 
heat capacity of fluid; 
eigenfunction; 
dimensionless heat flux, equation (7); 
thermal conductivity of fluid; 
approximation order; 
Nusselt number, equation (6); 
Peciet number, equation (2); 
system matrix, equation (IO); 
radial distance; 
tube radius; 
matrix of eigenvectors, equation (11); 
fluid tem~rature; 
fluid temperature at z --+ - co; 
wall temperature at 2 2 0; 

(r/R)’ ; 
dis~reti~tion matrix for U; 
fluid velocity; 
area mean fluid velocity; 
discretization matrix for 0,; 
dimensionless radial distance, equation (1); 
dimensionless axial distance, equation (1); 
axial distance. 

Greek symbols 

6,8, dimensionless temperature, equation (1); 
8, dimensionless bulk temperature, equation (5); 
A eigenvalue; 

A, matrix of eigenvalues, equation (11); 
9, rp, dimensionless temperature gradient; * 

tf- solution oflinear differential equation (10); 

$ o, $-vector at z = 0. 

Subscript 

+, tube section z > 0; 
-. tube section z < 0. 

I. INTRODU~ION 

THE LINEAR partial differential equation (LPDE) is one 
of the most commonly encountered mathematical 
models for description of engineering systems. Standard 
examples of LPDE such as the linear heat equation in 
different geometries and with different boundary con- 
ditions are treated in several elementary textbooks. 
The standard techniques of solution employ the eigen- 
functions of the differential operator, which form a 
“natural” basis for a series expansion of the solution of 
the LPDE. Quite often the associated boundary value 
problem is of the Stun-Liouville type and the 
orthogonality of the eigenfunctions allows for a term by 
term calculation of the expansion coefficients AR of the 
Fourier series. When the eigenfunctions are Bessel or 
circular functions explicit formulae for the eigenvalues 
and for Ak can be constructed and the solution of the 
LPDE can be written in a nice explicit form that 
permits a study of the effect of truncating the Fourier 
series after N terms. In case the eigenfunctions are less 
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simple or other complicating circumstances are present 
it is common practice to represent N eigenfunctions as 
accurately as possible by a numerical method and 
subsequently to use the tabuIar results in a numerical 
analogue of the procedure for trivial examples. 
Typically Hsu [I] determined the first 20 eigenvalues 
and the corresponding eigenfunctions by a Runge- 
Kutta technique in his recent study of the Graetz 
problem with axial conduction. 

It is, however, by no means certain that the “classical 
Fourier series method” is the most practical numerica 
representation of the solution even when the Nth term 
can be written down explicitly. The trial functions of an 
N term approximation of the solution are chosen as the 
eigenfunct~oils of the differentia1 operator without 
considering whether these are well suited for represen- 
tation of the solution. This restrictive choice may tead 
to very slowly convergent series in practically im- 
portant regions of the variables. Typical examples are 
the trigonometric functions that are eigenfunctions in 
many slab-symmetry problems. Villadsen and Sdrensen 
[2] observed that polynomial trial functions repre- 
sented the solution of the heat equation much better 
than trigonomet~c functions. The two dimensional 
steady state LPDE treated by Villadsen and Stewart [3] 
is even more typical The Boussinesq double trigono- 
metric series is very slowly convergent while a poly- 
nomial series converges within a few terms and is much 
better suited for tabulation of the sohrtion. 

The typical parabolic LPDE describes a transient 
phenomenon in terms of a generalized “time para- 
meter” y. The Fourier series of exponentially damped 
eigenfun~tions is theoretically best for large y, since for 
these y-values the true solution and the first term of the 
Fourier series become practically identical. For a finite 
y the classical eigenfunction expansion is not the 
optimal representation in any standard norm, and for 
small y the series is completely unsuited for numerical 
purposes. 

When even an explicit expression for the truncated 
Fourier series may entaif unnecessary computations 
work it appears irrational to imitate the behaviour of 
the truncated Fourier series by a numerical evaiuation 
of the “true” eigenfunctions of the differential operator. 
The extra computational work involved in an indi- 
vidual treatment of each LPDE in a search for the true 
eigenfunctions is unlikely to be recompensated by an 
increased accuracy of the solution for any finite y-value. 

The orthogonal collocation method operates with a 
fixed set of trial functions (Jacobi polynomials-often 
further restricted to Legendre polynomials), and the 
solution is found at discrete spatial values by a 
standardized interpolation scheme followed by an 
algebraic matrix-eigenvalue analysis, The small eigen- 
values of the matrix are usually very close to the 

eigenvalues of the differential operator, but the large 
eigenvalues differ very much from the corresponding 
differential operator eigenvalues. This, however. does 
not by any means indicate that the resulting N-term 
approximation for the solution of the LPDE is in- 
accurate. On the contrary several papers by Finlayson 
[4], by Hiavapk and coworkers (e.g. [5]) and by 
Villadsen and coworkers [2] have shown that extremely 
accurate results are obtained probably due to the 
superior quality of orthogonal polynomials as trial 
functions. 

The purpose of the present paper is to give some 
explanation for this phenomenon, to indicate where 
specific advantages of the collocation method can be 
expected and on the basis of the Craetz problem with 
axial conduction, which is used here to ihustrate the 
general coIIocation approach to LPDE, to suggest some 
interesting variants that could easiIy be soived by means 
of the same technique. 

2. THE EXTENDER GRAETZ PRO3L~~ 

A tube of radius R is insulated from z = 0 to 
z -+ - a, and has a wall temperature of & from z = 0 
to z -+ CQ. A Newtonian fluid is introduced at z -+ - x3 
with temperature Tb. It flows in fully developed laminar 
flow through the tube and finally attains the tempera- 
ture To in the far downstream (z J co) tube section. 
The model is the following linear partial differential 
equation 

Suitable dimensionless variabIes are 

with Pe ~R<v,)P~, ~--.-----~ 
k 

The boundary conditions of (2) are: 

a0 
@==l for y-‘-x, and -= i)x 0 for s = 0. (3) 

z=O for x = 1 and y ~00; 

0 = 0 for x = I and y 20. 
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In the standard treatment (e.g. [6] p. 295) of Graetz’ 
problem equation (2) the last term is ignored, and this 
term is indeed of negligible importance when 
Pe > 30-50 except in an extremely small region y N 0 
and close to the wall where the convective term is zero. 

The eigenfunctions F(x) of (2) are solutions of 

;; xg - (l-2)1-$ F=O. ( I( > (4) 

The boundary conditions of (4) are: 

x = 0: dF -0. xi-- ’ 

x= 1: f-0 for y<O 

and F =0 for y 20. 

The solution of (2) is: 

0 = 2 Ak &(‘d exl’@kY). 
0 

Since the boundary condition at x = 1 is different for 
positive and for negative y separate sets of eigenvalues 
and eigenfunctions must be found for each region 
y < 0 (d-,F_) and y > 0 (A,, F.+). Each set of eigen- 
functions and eigenvalues must be found by numerical 
integration, e.g. by a Runge-Kutta method and adjust- 
ment of & until 

Fk(l) = 0 (y > 0) or -& = o (y < O). 
1 

dF, 

Equation (4) is not a SturmLiouville problem for 
which Fk and Fi would be mutually orthogonal. Con- 
sequently the simple determination of the Fourier 
coeficients AL+ or &. fails. Hsu [l] expands both sets 
of eigenfunctions F+ and F_ in sets of orthogonal 
functions f+ and f- by a Gram-Schmidt procedure 
and determines the coefficients of f+ and f_ in the 
usual way. Finally the two separate solutions f+ and 
f_ are spliced together at y = 0. The whole numerical 
scheme is unnecessarily complicated especially since no 
increase in accuracy is expectable by using “true 
eigenfunctions”. It is shown in a following section 
that the eigenfunction expansion is extremely slowly 
convergent for small Pe near y = 0 and that Hsu’s 
method due to insufficiency of the numerical process 
yields qualitatively erroneous results for small y. 

It should briefly be mentioned that the numerical 
difficulties cannot be circumvented by relaxation of the 
boundary conditions (3) to B = 1 at y = 0 as attempted 
by Singh [7]. This is an indirect negation of the axial 
conduction ~nt~bution, which leads to a mathe- 
matically inconsequent problem formulation. 

A number of derived quantities are used in the 
following: 

(a) Bulk temperature Tat distance z: 

s 
pc,v,TdA = T 

s 
vz w,s dA 

A A 

or in tkrms of dimensionless temperature 8: 

(c) Total heat transfer to wall from z = 0 
z 

J, = s ! _kdT 2nR dz. 
0 c?r ?=R 

or 

(6) 

J+ 
J* yae 

m nR2(v,)pc,(&-G) = -4 - s I o ax X=l 
dy (7) 

(d)For Pe+co &y=O)=l and J=l--@. (8) 

3. NUMERICAL SOLUTION 

The second order differential equation (2) is reformu- 
lated into two coupled first order equations: 

ai3 

The operator 

la a@ 

x ax -- *ax (1 
is rewritten in terms of u = x2: 

Introducing x1 = u and finding the solution which is 
finite at u = 0 gives automatic satisfaction of the 
boundary condition at?/& = 0 at x2 = u = 0. 

The Nth order orthogonal collocation solution of 
(2a) is obtained when the residual of both equations is 
equated to zero at N values of u which are chosen as 
zeros ui of an Nth degree orthogonal polynomial P&J). 
In this paper the zeros of shifted Legendre polynomial 
have been chosen. The values of B and of rp at Ui are 
respectively Bj and vi. Each of the differential operators 
~~~~u and S2Bi;3u2 is inter~lated at each collocation 
point Ui by means of the collocation ordinate 0, 



By this technique the coup&d partial differential 
equations (;?a) degenerate into 2N coupled ordinary 
differential equations 

dB 

Y= vI 

dCP 
(91 

- = Pe2Vg -4PeZltJB+ A)& 
dq’ 

Were A and B are the collocation matrices for dO/du 
and for d28/du2. 

U and V are diagrmal matrices with respectively E+ 
and 1 - E+ in the ith main diagonal position. 

ft is noted that matrices A and B are di&rent in the 
two regions y < 0 and y > 0, since the formulas for the 
first and second derivatives both contain the wall value 
&+ i. This ordinate is zero for y > 0 but for y < 0 one 
must eliminate &++ 1 using the boundary condition 

0 =; ~~ N “~ ANtl,jaj for u = f. 

j=1 

This elimination implies a correction of each of the 
remaining elements Lz, and A,, (i,j) = (1,2, . q . , N). 

Further details an the construction of A and B are 
given in [S]. 

The complete matrix form~ati~n of (9) is 

Q is again different in the two y regions since A and 
B are diRerent as explained above. 

Equation (10) is solved by a standard matrix 
diagonali~tio~ technique : 

Table 1. Magnitudes of the eigmvatues for the ckkaal Graetz problem (Ptz -, x) compared with the collouarion 

The diagonal matrices A, and I\ _ contain the 2h’ 
eigenvalues of respectively Q + and Q_ , Q+ has N 
positive and N negative eigenvalues, Q _ has rV positive 
and N- 1 negative eigenvalues in addition TO the 
eigenvalue 0, which is obtained for y c f) due to the 
zero flux at the wall in this region. 

From the boundary conditions (ii 4 0 for y -+ x3 and 
0-1 for I;-+ --x)) it is known that all collocation 
ordinates +i must remain finite for y -+ x and for 
p-P --ccI. 

Consequently the N positive expnnentials which 
appear in 11 la) for positive cigenvalues of Q.+ and the 
N- I positive expanentials which appear in f 11 b) for 
negative eigenvalues of Q_. must be suppressed by 
orthogonaIity relations between the eigenrows and the 
vector & of the dependent variable q5 at 1: - 0. 

The rows of S;’ that correspond to positive eigen- 
values of Q+ and the rows of S:’ that correspond to 
negative eigen~lue~ of Q _ must he orthogonal to $f@. 
This yields 2H - 1 linear equations for the components 
of +&. The final Zit’th equation is abrained by the 
no~ali~ation @i -+ 1 for y -+ - e, and all components 
of I,& can be found. 

In summary the total solution B(y) is obtained by 
diagonaliza~ion of two 2N. 2N matrices Q+ and Q_ 
and subsequent solutian of 2N linear equations by 
Gauss elimination. The scalar quantity g(y) in (5) is 
directly obtained by Gauss quadrature using the 0(y) 
values of f 1 l), 

4. QUALITATIVE BEHAWOUR OF THE SOLUTION 

The accuracy of the solution (11) to (2) is in principle 
determined by the success of the N-point intcr~oIation 
applied in the x-direction, since the resulting set of 
ordinary differential equations (9) has a closed solution 
(1 l), which is accurate except for round-off errors in the 
QR algorithm used to determine the diagonalized form 
SAS-’ of Q and in the ensuing Gauss elimination 
routine for calculation of &. 

The magnitude of the negative eigenvalues Xi of Q+ 
for N = I2 and Pe -+ CC are compared in Table 1 with 
the ei~en~alues of the differential operator in the 
classical Fourier series expansion. When Pe -+ czz all 
positive eig~n~alues of Q- increase fo infinity and the 
problem collapses into the ordinary Craetz problem 

eigenvalues far y > 0 (negative eigenvalues of Q+ in (IO)) for N = 12 collocation points 

k 1 2 3 4 S 6 7 8 9 10 11 11 
_~“--l.l--_-__l_~l- _----~- .~---.-- .__.. -..I_ 

Magnitudes of the eigenvalues 
Fourier series 7,318 44.61 1139 2152 348.5 523.9 71 I.2 940.5 1201 149.5 1x20 2178 

Twelve point Difference between eigenvalues (Collocation-Fourier) 
colfocation 4,tQ-12 5,10-” 

Magnitude of col&ation eipnvalues 
3.10-8 2.10-4 @2 1@5 82.7~7 1539 3627 32243 81559 4.1.3P 
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FIG. 1. First three negative eigenvalues of Q+ (equation 10) as function of Pe-number. 
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FIG. 2. Bulk mean temperature Bdefined by equation (5) as a function of axial position 
y = z/RPe for discrete values of Pe. 

with 0 = 1 at y = 0. The first two eigenvalues of Q+ 
are equal to the “Fourier eigenvalues” to within the 
accuracy of the QR algorithm. This means that the 
solution 0(y) or B(y) is identical to the Fourier series 
solution and hence to the exact solution for “large” y. 
This “far downstream” accuracy of the collocation 
solution was first observed by Villadsen and Stewart 
[3] for a specific LPDE, and has since then been 
discussed by Villadsen ([9] Chap. 1.7 and 3.1), by 
Finlayson ([IO] Chap. 5) and by many others. It will 
not be further commented in this paper. Rather the 
attention of the next section will be focussed on the 
accuracy of the series solution in the region y = 0 
where a comparison with boundary layer solutions will 
be made. The remainder of this section will be devoted 
to a quatitative discussion of the solution for finite Pe. 

The first three negative eigenvalues of Q+ are shown 
in Fig. 1 as functions of Pe. For Pe > 50 they have 
practically the same values as in the limiting case 
Pe-+co. 

Figure 2 shows that 8&) is aiso practically inde- 
pendent of Pe for Pe > 50 except in a small region 
close to y = 0. The gradient 8@y is infinite at y = 0 
for Pe -+ co and large but finite for Pe = 50. It rapidly 
approaches zero for negative y values. It is noted that 
a given g-value is obtained at an axial position zJR 
which is proportional to Pe when Pe 2 50. Axial 
conduction is then negligible and Pe serves oniy as a 
scaling factor for axial distances. 

In the Pe range l< Pe < 10 (,&I, j&l and j;E31 
rapidly decrease and diffusion into the upstream section 
is noticeable. For Pe < 1 the three eigenvalues become 
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FIG. 3. Nusselt number defined by equation (4) as a function of p for discrete 
h-values. 

proportional to Fe: -& = p$c, where Pk is the kth 
zero of Jo(p) i.e. 2.40, 5.8 1 -(see Appendix, Section b2). 
The positive eigenvalues of Q_ also become pro- 
POrtiOnal t0 Pe: & = p&, where pk iS now the kth 

zero of J; (p). 
The heat sink downstream from y = 0 will force 0 to 

zero for every y when Pe --f 0. If. however, the Fourier 
coefficients and the eigenvalues are divided by Pe a 
we11 defined final solution for Pe -+O results. The 
behaviour of this solution for small z/R, which is the 
proper axial coordinate in this case, will be studied in 
Section 5. 

Figure 3 shows Nu(y) defined by (6) for various 
Pe-values. A similar figure is given by Hsu ([I] Fig. 3), 
but while Ii& curves for ~~(~) apparently approach 
a finite value for y -+ 0 when Pe < f 0 our curves show 
that Nu - (yPej_“’ for Pe -c 10 in much better agree- 
ment with some results of Newman [it] which are 
discussed in the next section. Thus the collocation 
exponential series must have much better convergence 
properties than the “true” Fourier series for smali y 
even though the large eigenvalues of Q are blatantly 
different from the differential operator eigenvalues as 
exemplified in Table 1. 

The far downstream behaviour of Nu(y) is as ex- 
pected identical by the two methods: 

For Pe -+ co Nu(y 2 1) N -$,%r where A1 = the first 
negative eigenvalue of Q+, but as Fe decreases from 
infinity to zero the Nusselt number increases from 
3.656 to 4.180 while 11i / decreases from 7.31 to zero. A 
perturbation analysis which explains these results is 
given in Ap~n~x A. 

5. THE CHARACTER OF THE SOLUTION FOR SMALL y 

Newman [12] has extended Leveque’s similarity 
solution of (3) for Pe -+ co to the following three terms: 

f(Pe --f co) = I - B = 43698y2’3 
-2~4y-04454y4’3$O(y5~3). (12) 

The first term represents J with an error less than 
5 per cent for y < 10e3. 

Figure 4 shows J computed by 12 and 30 terms of 
the Fourier series (broken curves) compared with the 
solution by (12) and by a 12 point collocation solution 
(full curve). The truncated Fourier series is obviously 
not applicable for detection of the boundary-layer 
solution J - 4,0698y2/3 while the collocation series 
with N = 12 closely follows (12) at least down to 
y = 1O’-5 where the first term of (12) is accurate to 
within 1 per cent. In the limit y-+0 the collocation 
solution eventually breaksdown, since the infinite slope 

afl -._ 
ax x=l 

for y =O 

cannot be represented by polynomials, but it does a 
much better job than the Fourier series for which 
convergence to J is found empirically to be 

ln~~(Fourier~ - Jftrue)) - constant. N”” 

where N is the number of terms in the series and the 
constant depends on y. More than 100 terms should be 
taken to obtain the same accuracy at y = 2~10~ 5 as the 
12 point collocation solution. 

The explanation is found in the rapid increase in 
magnitude of the eigenvalues RI of Q+ in Table 1. The 
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FIG. 4. Heat flux J defined by equation (7) as a function of y for Pe -+ co. Curve (c): 
12 point collocation and Newman’s formula equation (12). Curves (a) and (b): 

Truncated Fourier series with twelve and thirty terms. 

“Fourier eigenvalues” are approximately given by 
- (4k -$)” [l l] for k > 7-8, while the largest “colloca- 
tion eigenvalue” is -4*16.106 for N = 12. It is a 
prerequisite for an accurate eigenfunction series solu- 
tion with a given number of terms N that -&y > 1 
and this is not satisfied for y = 2.10-’ by, e.g. a 12 term 
Fourier series. The expansion coefficients A,, decrease 
to zero with increasing k at about the same rate for the 
collocation series and for the Fourier series, but the 
much larger spread of collocation eigenvalues for 
k > N/2 makes the collocation series much faster 
convergent for small y. The large y convergence 
behaviour is fast and almost identical for the colloca- 
tion series and for the true Fourier series due to the 
equivalence of the (Ak, ,I,) in the two series for small k. 

It was noted in the previous section that the first 
three eigenvalues became proportional to Pe when 
Pe 6 1. The same numerical relation is also obtained 
for larger Pe, but now only for the larger It, since for 
increasing k the term &‘Pt? eventually dominates the 
factor of F in (4). Hence the large eigenvalues of (4) 
converge to l&J = Pekn since the large zeros of J,(p) 
and J,(p) occur with a distance of IE. This means that 
the convergence of the Fourier series for small y 
becomes even more poor when Pe is finite, since the 
largest eigenvalue with N terms is proportional to N 
and not to N2 as was the case for Fe -+ co. An analysis 
of Hsu’s eigenvalue data ([l] Table 1) shows that 
& (= - 28; in the table) = - Pe(nk - 1.276) to within 
0.005 per cent for k > 4 when Pe = 1.5 and to within 

2 per cent for k > 9 when Pe = 3. A similar analysis of 
the collocation eigenvalues for N > 11 shows that the 
largest negative eigenvaiue of Q+ is represented by 
dN = - 1*272Pe(N+0,5139)’ to within 0.002 per cent 
irrespective of the Pe value (0.2 < Pe < 300). This 
almost schematic determination of AN is expectable, 
since Q+ has a fixed structure when the collocation 
points u and the order of appro~mation N has been 
chosen. 

The main observation is again that the open-ended 
Fourier series consists of mutualiy independent terms 
which are determined one by one starting with the 
term that describes the far downstre~ behaviour of the 
solution, while the Nth order interpolative collocation 
scheme simultaneously determines the parameters of N 
orthogonal trial functions such that the remainder is 
incorporated also for finite y. This has no detrimental 
effect for large y since the first eigenfunctions are almost 
identical by the two methods, and at small y where the 
remainder of the N term Fourier series is large a very 
beneficial effect is noticed due to the better focusing 
power of the collocation series. 

Figure 5 presents some nume~cal results obtained 
with N = 17 collocation points. The quantity J of 
formula (7), i.e. the total heat transfer to the tube wall 
from y = 0 to a given y value is studied as a function 
of y at discrete Pe values. 

The circled points for Pe = O-2 show computed 
values similar to curve c on Fig. 4. A straight line 
portion of the curve can be found in the log-log plot 
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FIG. 5. J as a function of y for various values of Pe. The circled points indicate the range 
in which a seventeen point collocation solution fits the straight lines. 

but while as a straight line is a valid representation of 
the collocation results in Fig. 4 at least to y = tOd5 it 
will not be valid for y < 0.01 even with 17 collocation 
points. This is due to the slow convergence of an 
exponential series representation of J for y _ 0 
especially for small Pe. Since a true Fourier series has 
a weaker convergence than the collocation series the 
true relationship J _ y’12 for small y which is clearly 
observed on Fig. 5 could not have been found by means 
of a Fourier series. 

For J > 0.5 the straight line relationship does not 
either hold, in this case due to failure of a representation 
of the computed results for large J by the first term of 
a penetration theory series similar to (12) which only 
holds for Pe --* cc. 

The other lines on Fig. 5 are drawn through the 
straight line portions of curves computed for other Pe 
values using N = 17. The discussion for Pe = 0.2 
implies that the straight fines can be extended to y = 0, 
since the deviation of the computed results from the 
straight lines for small y is explained by a failure of the 
collocation solution. 

Consequently the results on Fig. 5 can be used to 
deduct penetration theory results even though they are 
based on an expansion of the solution which is un- 
suitable for small y. 

For Pe < 0.5 it is seen that J is proportional to 
(Peyp2 or J = i~.5(z,JR) ‘I2 for f < 0.5. It is expected 
that J is independent of Pe for Pe -+ 0, since the 
convective term in (2) becomes insignifi~nt in com- 
parison with the axial diffusion term when Pe-+ 0. 
The quantitative reIationship which is found between J 
and z by an empirical analysis of the computer results 

is of some independent value and it could probably be 
confirmed by a technique similar to the one used by 
Levsque in the derivation of the first term of (12) for 
Pe-+co. 

For 1.5 < Pe < 3 it is obvious that f is dependent 
on Peas well as on z/R but the proportionality between 
J and (z/R)“’ still holds. 

For 5 < Pe -=c 30 practically the same curve is ob- 
tained which means that 

0 
I,'2 

J cc Y”~ or J cc (Pe-‘12) f 

For Pe I=- 30 the elliptical nature of the partial 
differential equation is discerned only in a very small 
region near y = 0 since the axial conduction term of 
(2) is negligible outside this region. Outside this region 
where J CE y’j2 the Levt?que solution J = 4.07p2j3 of 
(12) holds until y N 2,10m3. 

Newman [ll] first detected the J x yl” solution 
behind the LevZque solution for large but finite Pe by 
using a singular perturbation technique inwards from 
the Lev&que solution. It is obvious that his result 
J = 4.24Pe- y 1/4 liz for ,v ,$ 10e5 behind the Levtque 
solution is extremely difficult to detect by an analysis 
ofnumerical data based on an exponentially decreasing 
series and only the “LevCque” portion of the results are 
shown on Fig. 5 for Pe = 300. 

6. SUGGESTIONS FOR FURTHER WORK 

The previously publish~ examples of solutions of 
linear partial differential equation (LPDE) and the 
more general observations based on the eigenvalue 
spectrum made in the present paper suggest that the 
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solution of these mathematical models by a combina- 
tion of orthogonal collocation and matrix methods can 
give results of equal applicability for large and for 
small values of the unrestricted independent variable. 
This means that the similarity or singular perturbation 
solutions, which are often quite hard to develop by 
semi-analytical methods, can be avoided at least for 
qualitative studies of the solution. 

The matrix methods of Section 3 are quite generally 
applicable for any LPDE and also for non-linear 
equations if they are coupled to an iterative process, 
e.g. a Newton-Raphson method. An interesting variant 
of the collocation method, the so-called spline- 
collocation [13], can be used to improve the accuracy 
for small y. The profile 0(y) is very steep near x = 1 for 
small y and a global approximation of C!?(X) by poly- 
nomials is not accurate-the results on Fig. 5 for 
N = 17 illustrate the failure of the method for small y. 
If on the other hand the x interval [O, 11 is split into 
two subintervals of which one extends from x = 1 to 
x, where x, may be, e.g. 0.8 one may apply collocation 
to each interval, splicing the two parts of the profile 
together at x, by demanding continuity of B and I%/?x. 
Preliminary investigations on this example show that 
a total of 7 collocation points of which 3 are allocated 
to the small interval (x,, 1) and 4 to (0, x,) gives the 
same accuracy as a global method with N = 12. 
Further applications of this method which may be very 
useful in many examples with steep profiles are given 
in [13]. 

Heat transfer to pseudo-ptastic materials in tubes 

(vz=~+~)(~z)(l-xM) with M>2) 
may constitute an interesting example where axial 
conduction plays a significant role. Brinkman’s prob- 
lem of viscous heating of fluids flowing in small bore 
tubes under large pressure gradients is another example 
where preliminary calculations show that axial con- 
duction has an appreciable effect. Both examples are 
solved by an exact repetition of the algo~thms in 
Section 3. 

REFERENCES 

1. C. W. Tan and C. J. Hsu, Low Peclet number mass 
transfer in laminar flows through circular tubes, Int. J. 
Heat Mass Transfer 15,2187-2201 (1972). 

2. J. Villadsen and J. P. S@rensen, Solution of parabolic 
partial differential equations bv a double collocation 
method, Chem. Engng Sci. 24,1337-1349 (1969). 

3. J. Villadsen and W. E. Stewart. Solution of boundarv- 
value problems by orthogonal collocation, Gem. Engng 
Sci. 22,1483-1501(1967). 

4. B. Finlayson, Packed bed reactor analysis by orthogonal 
collocation, Chem. Engng Sci. 26, 1081-1091 (1971). 

5. V. HlavaCek and M. Kubicek, Qualitative analysis of the 
behaviour of nonlinear parabolic equations, Chem. 
Engng Sci. 26,1737-1752 (1971). 

6. R. B. Bird, W. E. Stewart and E. Lightfoot. Transport 
~~en~rne~a. Wiley, New York (1960). 

7. S. N. Singh. Heat transfer by laminarflow in a cylindrical 
tube, Appl. Scient. Res. Al, 325-340 (1958). 

8. M. L. Michelsen and J. Villadsen, A convenient com- 
putational procedure for collocation constants, Chem. 
Engr Jl4,64-68 (1972). 

9. J. Villadsen, Selected approximation methods for 
chemical engineering problems, Instituttet for Kemi- 
teknik, DtH. Lyngby (1970). 

10. B. Finlayson, The Methad of Weighted Residuals and 
Variationai Principles. Academic Press. New York 
(1972). 

il. J. Newman, The Graetz problem, UCRL-report No. 
18646 (1969). 

12. J. Newman, Extension of the Lev&que solution, J. Heat 
Transfer 91, 177-181 (1969). 

13. J. Villadsen, Applications of the collocation method, 
Instituttet for Kemiteknik (1972). (Available on request.) 

APPENDIX A 

In this appendix a perturbation solution of equation (4) 
is developed. The main results are formulae (9A) and (12A) 
for the far downstream Nusselt number NLI,, when the 
Peclet number is large or small. The numerical value of 
Nu,, can easily be obtained with a low order collocation 
method and in this respect nothing new is offered. It is on 
the other hand a temptation to develop semi-analytical 
explanations for the numerical behaviour of the solution, 
which is known with many digits accuracy from the 
collocation method-in fact this “‘deveIopment of formulae 
by hindsight” is probably the most valuable feature of any 
accurate numerical method. 

Formulae (5A) and (6A) that represent the general results 
of the perturbation method have a wide applicability for 
approximate solution ofany boundary value problem, which 
is formulated as a perturbation to a Sturm-Liouville 
problem. 

(a) General treatment 
Let a Sturm-Liouville equation be perturbed by ~f(x_ I)F 

where E is a small constant and f&I) is a specified 
function of x and 1 

+ (q(x) + Zr(x))F+ af(x, 1)F = 0. (IA) 

It is desired to find the first eigenvalue I and the corre- 
sponding eigenfunction F(x) as perturbations to the first 
eigenvalue 1X and eigenfunction F,(x) of the simplified 
problem with a = 0. 

a.=&+d* and F = F, +aF*. (2‘4) 

The whole set of eigenvalues and eigenfunctions (&, F;(x)) 
of the unperturbed problem is assumed to be known. 
Equation (2A) is inserted into (IA) and terms in a’, , are 
discarded. 

$ p(x)g +A*Flr(x) 
i 1 

+(~(~)+~,r(x))~* +S(x, d,)F, = 0 (3A) 
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F* is expanded in a Fourier series on the set (lr;] 
i = 2.. . and inserted into (3A) 

The asymptotic Nusselt number for large Pe is obtained by 
integration of (?A) with F = first eigenfunction 

and 

a*Flr(.x) -t f c&A, -d,)r(x)F,+f(x, n,)F, = 0 (4A) 
Z 

%* and cj are found from (4A) by multiplication with respec- 
tively Ft and Fj followed by integration over the ortho- 
gonality interval (a, h) 

s 

b 
I* r(x)F: dx = - 

I 
I*& Ir)F: dx (5A) 

a (I 

i 

b 
Cjl.41 -i,) r(x)52ds = - ’ f(x,&)FIF,dx. (6A) 

Ji? .r /I 

Since all integrals in (SA) and (6A) can be found either 
analytically or by quadrature these equations provide ex- 
plicit values for 1* and ci. 

(b) Application of (5A) and (6A) to the extended Graetz 
problem 

(1) Large v&es of Pe. 

- A(1 -x’)xF + iiT xF = 0. (7A and 4) 

(9A) 

Table 2 shows that I as well as Nu,, are determined with a 
high accuracy for Pe > 30 and that the perturbation 
formulae give a tolerable accuracy even at Pe = 5. Note that 
the approximation Nu, = --+$,I which holds for a true 
Sturm-Liouville problem is qualita~vely in error, since the 
perturbation of the first eigenfunction (last term in 9A) is 
larger than the perturbation ,X*/Pa’ of 1.r. 

Table 2. The first eigenvalue for y > 0 and the asymptotic Nu-number for large Pe by 
coliocation and by ~rturbation (SA, QA) 

Pe 100 30 10 5 

--A(17 point colloc.) 7,3069064 7.2406920 6.744049 568967 
--I by (8A) 7.306894 7.23922 6.6436 4.63 
Relative difference 1.7.10-6 2.0.10-J 1.3.1o-z 0.14 

Ntr (17 point colloc.) 36572414 366168 3.69518 3.7672 
Nu by (9A) 3.6572421 3.66178 3.70166 3.8363 
Relative difference < 1o-6 2.5.10-s 1%.10-s 2.10-z 

In the notation of (3A): 

r(x) = -x(1 --x2), 1 = & and f(s. II) = x$ 

The eigenfunctions {@ of (7A) with d = 0 are Graetz’ 
functions and the eigenvalues for y > 0 are 

(4) = - 7.3135869, -44.60946,. ._, 

A* = {I I.:xF:dx//j.; x(f-x’)F:dx 

= 1.2512252: = 66.926. 

The integrals can either be determined from the power 
series for F, or by Gaussian quadrature using the collocation 
ordinates 0(y) for y 2 1 and Pe --t co. 

Hence the first eigenvalue of (4) is 

(2) Smotl oalues of Pe. Equation (4) is resealed by taking 
an axial coordinate y = z/R : 

r(x) = x, a = Pe, and f(.x, I,) = -1,x(1 -2). 
(10.4 

The eigenfunctions {&] of (lOA) with c( = 0 are Bessel 
functions J&x) where li are the negative zeros of Jo(p), 
It = -2.4048256, i, = -5.52 etc. and 2’ = (2, +aAxt2 - 
n: +2&R*. 

Consequently the development from (2A) to (5A) yields 

j.* =+ 
s 

1 8 1 
x(1--r$&@.,x)dx 

:il 
x$(&x)dx = 0.39095 

0 0 

1 = - 2-4048256 + 0.39095 Pr. (1lA) 
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The coefficients cj of (6A) are 

I 

l &x(1 -~~).I~(~,x).J&~x)dx 211 1 
0 

cj = m 
s 

s 0 1 
x( 1 - x2)J0(& x)JO(Ijx) dx. 

xJ;(njx) dx 
= J:(nj)(n: -1;) s 0 

The first four cj are found by numerical quadrature: 

lO’{Cj} = (2.5895, -0.2320,0.0515, -0.0170) 

Nu,, is obtained in the same way as for large Pe: 

Pel A: +2&1*Pe 
-_+ 

s 0 1 

x.I& x) dx + Pe f cj xJo(Ajx) dx 
2 

u 

s 0 1 

2 2 s 1 
x( 1 - x2).&,(LI x) dx + Pe 

f 
cj 

s 1 
x(1 -x2).J0(~jx)dx 

0 2 0 
PeI 

= --+ 
1: + 2L, A*Pe II + PeS, 

2 2 Ir + Pe& 

s I 

Ilj = 
0 

xJo(,ljx) dx = T 
I 

s I 

lZj = 
0 

x(1 -x2)J,,(Ljx)dx = ;Jr(,Ij) 
1 

S, = -0.16815.10-2 and S, = -O.O2137.1O-2 

Hence the value of Nu, for Pe = 0 is 

n: I, A: 
T r = 8 = 4.180654 

2 

and the perturbation formula is 

Nu _ 4.180654+Pe(1.202412- 1.359292-2.6580.10-‘) = 4.180654-0.1835Pe. (l2A) 

The perturbation is again seen to result as a small difference between larger terms, and the inclusion of several terms of the 
perturbed eigenfunction is necessary. The accuracy of (11A) and (12A) is from Table 3 seen to be very satisfactory for 
Pe < 1 and acceptable up to Pe - 1.5. 

Table 3. The first eigenvalue for y > 0 and Nu, for small Pe by collocation and by perturbation 
(llA, 12A). Note: Eigenvalues of this table are the eigenvalues of (4) divided by Pe 

Pe 

-I (17 point colloc.) 
-1 by (11A) 
Relative difference 

Nu (17 point colloc.) 
Nu by (12A) 
Relative difference 

0.05 0.2 0.5 1 1.5 

2.38535 2.32784 2.21695 2.04437 1.8869 
2.38527 2.32663 2.20935 2.014 1.62 
3.3.10-S 5.2.10+ 3.4.10-S 1.5.10-Z 0.13 

4.171561 - 4.09685 4.02735 3.96985 
4.171479 4.14395 4.08890 3.997 3.905 
1.9.10-5 1.9.10-3 7.5.10-3 l.6.1O-2 
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LE PROBLEME DE GRAETZ AVEC CONDUCTION THERMIQUE AXIALE 

RCum&Le probleme de Graetz avec conduction thermique axiale est trait& comme illustration d’une 
mbthode de r&solution d’une classe tr& importante d’tquations lineaires aux dtrivtes partielles. La 
mtthode est une combinaison de la collocation orthogonale et de la diagonalisation de matrice. La raison 
de la trts grande prbcision, obtenue par collocation, est discutte B partir des valeurs propres de 
I’opbrateur de collocation. On trouve qu’elles croissent plus vite que les valeurs propres vraies pour 
k > N/2, oi N est le nombre de points de collocation et ceci permet aussi une grande prbcision dans 
la “rkgion de p&n&ration” de la solution oi les sCries de Fourier sont lentement convergentes. 

On developpe en appendice des formules explicites donnant le nombre de Nusselt asymptotique pour 
un nombre de P&let soit grand, soit petit. Elles sont basees sur une perturbation des fonctions propres 
du modkle simplifi8, avec un nombre de P&let infini ou nul. 

On propose des variantes du problkme de Graetz qui peuvent &tre rCsolues par une repetition des 

calculs p&en&. 

DA.5 GRAETZ-PROBLEM MIT AXIALER W;IRMELEITUNG 

Zusammenfassung-Am Beispiel des Graetz-Problems mit axialer WLrmeleitung wird ein Liisungs- 
verfahren fti eine wichtige Klasse linearer partieller Differentialgleichungen entwickelt. Die Methode 
ist eine Kombination aus orthogonaler Kollokation und Matrix-Diagonalisierung. Der Grund fiir die 
durch die Kollokation erreichte sehr hohe Genauigkeit wird anhand der Eigenwerte des Kollokations- 
Operators diskutiert. Es zeigt sich, dal3 diese vie1 schneller anwachsen als die wahren Eigenwerte fiir 
k > N/2-mit N als der Anzahl der Kollokations-Punkte; dies erlaubt eine hohe Genauigkeit such in 
der “Durchdringungsregion” der Liisung, in der Fourier-Reihen langsam konvergieren. 

Explizite Ausdriicke fiir die asymptotische Nu-Zahl fiir groI3e und kleine Pe-Zahlen werden in einem 
Anhang aufgestellt. Sie basieren auf einer StGrung der Eigenwerte des vereinfachten Modells mit 
unendlich groljen oder sehr kleinen Pe-Zahlen. Weiter werden einige Varianten des Graetz-Problems, 

die durch eine Wiederholung der vorliegenden Berechnungen geliist werden ktinnen, vorgeschlagen. 

3AAAYA TPETUA IlPM OCEBOli TEnJIOI-IPOBOAHOCTM 

AmtoTaqHR- Mcnonbsyn 3aAary rpewa npA ocesofi TennonpoBoAHocrH B Kaqecme npmepa, 

pa3pa60TaHMeTOA PeIIIeHHSI BaW(HOTO KJIaCCaJEiHeiiHblXAH~C&)epeHUHaJIbHbIXypaBHeHRfiBYaCTHbIX 

ITpOH3BOAHblX.h'feTOAITpeACTaBJIfleT co6oii KOM6HHaLWmOpTOrOHanbHblXKOJInOKaUlliiRMaTp3iYHOii 
AHarOHaAH3aUWf. BbICOKaSl TO'fHOCTb, IIOJIyWHHaSI nyTeM KOJIJtOKaLWti, 06LxCHfieTCx C IIOMOIIIbH3 

C06CTBeHHblX 3HaYeHEiii OIIepaTOpa KOJIJIOKaWii-% HaiiAeHO, 'IT0 CO6CTBeHHble 3HaYeHMfl OnepaTopa 

KonnoKausI~ yBenawiBamTcRropa3Ao 6bIc~pee,~eMBCTIiHHbleC06CTBeHHbIe3Ha'leHUR riper K> N/2, 
me N- wcno TOYeK KOJUIOKaUHZi, YTO TaKme II~HEWABT K (Sonbmoti TO'~HOCTH B cco6nacra npo- 

HAKHOBBHHRD peILIeH&ifl,BKOTOpOfi MeAJIeHHO CXOAATCR p5IA @ypbe. 

B IIpMJIOmeHLiH IIOnyseHbl @OpMyJIbI B SIBHOM BHAe AJIR aCliMIITOTH'IeCKOl-0 WCJIa HyCCeJIbTa 

IlpH 6onburcrx U MaJIbIX YACJIPX neKJIe. OHH OCHOBaHbl Ha B03MyWHUH C06CTBeHHbIX fjlyHKI.@ 

yII,,OE,eHHOii MOAeJIH llpH6WKOHe~HOM Fin&i HyAeBOMWCJIe neKJIe. 

npeAJlaraeTC5I HeCKOJIbKO BapHaHTOB ?aAaW rpeTUa, KOTOpbE MOXCHO FlIIHTb IIyTeM IIOBTO- 

peHHR HaCTOIILLIMX paCYeTOB. 


