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NOMENCLATURE
A, discretization matrix for 4/0x;
B, discretization matrix for 8%/0x?;
Cps heat capacity of fluid;
F.,  eigenfunction;
J, dimensionless heat flux, equation (7);
k, thermal conductivity of fluid;
N, approximation order;
Nu, Nusselt number, equation (6);
Pe,  Peclet number, equation {2);
Q, system matrix, equation (10);
¥, radial distance;
R, tube radius;
S, matrix of eigenvectors, equation (11);
T, fluid temperature;
Ti» fluid temperature at z — — 00}
To, wall temperature at z > 0;
u, (r/RY*;
U, discretization matrix for u;
vy, fluid velocity;
{v,>, area mean fluid velocity;
v, discretization matrix for v,
X, dimensionless radial distance, equation (1);
¥, dimensionless axial distance, equation (1);
z, axial distance.
Greek symbols
6,08, dimensionless temperature, equation (1);
a, dimensionless bulk temperature, equation (5);
A, eigenvalue;
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Abstract—Using the Graetz problem with axial conduction as an illustrative example a method for
solution of an important class of linear partial differential equations is developed. The method is a
combination of orthogonal collocation and matrix diagonalization. The reason for the very high
accuracy, which is obtained by collocation, is discussed in terms of the eigenvalues of the collocation
operator. These are found to increase much faster than the true eigenvalues for k > N/2 where N is the
number of collocation points, and this permits a high accuracy also in the “penetration region” of the

solution where Fourier Series are slowly convergent.

Explicit formulas for the asymptotic Nu-number for large and small Pe-numbers are developed in an
appendix. They are based on a perturbation of the eigenfunctions of the simplified model with either

infinite or zero Pe-number.

A number of variants of the Graetz problem, which can be solved by a repetition of the present
computations, are proposed.

A, matrix of eigenvalues, equation (11);

o, ¢, dimensionless temperature gradient; *

¥, solution offinear differential equation (10);
Yo, Y-vector at z = 0.

Subscript

+, tube section z > 0;
-, tube section z < 0.

1. INTRODUCTION

THE LINEAR partial differential equation (LPDE) is one
of the most commonly encountered mathematical
models for description of engineering systems. Standard
examples of LPDE such as the linear heat equation in
different geometries and with different boundary con-
ditions are treated in several elementary textbooks.
The standard techniques of solution employ the eigen-
functions of the differential operator, which form a
“natural” basis for a series expansion of the solution of
the LPDE. Quite often the associated boundary value
problem is of the Sturm-Liouville type and the
orthogonality of the eigenfunctions allows for a term by
term calculation of the expansion coefficients 4, of the
Fourier series. When the cigenfunctions are Bessel or
circular functions explicit formulae for the eigenvalues
and for A, can be constructed and the solution of the
LPDE can be written in a nice explicit form that
permits a study of the effect of truncating the Fourier
series after N terms. In case the eigenfunctions are less

1391



1392

simple or other complicating circumstances are present
itis common practice to represent N eigenfunctions as
accurately as possible by a numerical method and
subsequently to use the tabular results in a numerical
analogue of the procedure for trivial examples.
Typically Hsu [1] determined the first 20 eigenvalues
and the corresponding eigenfunctions by a Runge-
Kutta technique in his recent study of the Graetz
problem with axial conduction.

It is, however, by no means certain that the “classical
Fourier series method” is the most practical numerical
representation of the solution even when the Nth term
can be written down explicitly. The trial functions of an
N term approximation of the solution are chosen as the
eigenfunctions of the differential operator without
considering whether these are well suited for represen-
tation of the solution. This restrictive choice may lead
to very slowly convergent series in practically im-
portant regions of the variables. Typical examples are
the trigonometric functions that are eigenfunctions in
many slab-symmetry problems. Villadsen and S@rensen
[2] observed that polynomial trial functions repre-
sented the solution of the heat equation much better
than trigonometric functions. The two dimensional
steady state LPDE treated by Villadsen and Stewart [3]
is even more typical. The Boussinesq double trigono-
metric series is very slowly convergent while a poly-
nomial series converges within a few terms and is much
better suited for tabulation of the solution.

The typical parabolic LPDE describes a transient
phenomenon in terms of a generalized “time para-
meter” y. The Fourier series of exponentially damped
eigenfunctions is theoretically best for large y, since for
these y-values the true solution and the first term of the
Fourier series become practically identical. For a finite
y the classical eigenfunction expansion is not the
optimal representation in any standard norm, and for
small y the series is completely unsuited for numerical
purposes.

When even an explicit expression for the truncated
Fourier series may entail unnecessary computational
work it appears irrational to imitate the behaviour of
the truncated Fourler series by a numerical evaluation
of the “true” eigenfunctions of the differential operator.
The extra computational work involved in an indi-
vidual treatment of each LPDE in a search for the true
eigenfunctions is unlikely to be recompensated by an
increased accuracy of the solution for any finite y-value.

The orthogonal collocation method operates with a
fixed set of trial functions (Jacobi polynomials—often
further restricted to Legendre polynomials), and the
solution is found at discrete spatial values by a
standardized interpolation scheme followed by an
algebraic matrix—eigenvalue analysis. The small eigen-
values of the matrix are usually very close to the
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eigenvalues of the differential operator, but the large
eigenvalues differ very much from the corresponding
differential operator eigenvalues. This, however, does
not by any means indicate that the resulting N-term
approximation for the solution of the LPDE is in-
accurate. On the contrary several papers by Finlayson
[4], by Hlavagek and coworkers (e.g. [5]) and by
Villadsen-and coworkers [ 2] have shown that extremely
accurate results are obtained probably due to the
superior quality of orthogonal polynomials as trial
functions.

The purpose of the present paper is to give some
explanation for this phenomenon, to indicate where
specific advantages of the collocation method can be
expected and on the basis of the Graetz problem with
axial conduction, which is used here to illustrate the
general collocation approach to LPDE, to suggest some
interesting variants that could easily be solved by means
of the same technique.

2. THE EXTENDED GRAETZ PROBLEM

A tube of radius R is insulated from z=0 to
z-» — o0 and has a wall temperature of T, from z =0
to z - c0. A Newtonian fluid is introduced at z —» —~ oo
with temperature 7;. It flows in fully developed laminar
flow through the tube and finally attains the tempera-
ture Ty in the far downstream {z — co) tube section.
The model is the following linear partial differential

equation
T P\oT
‘z - 2 A 1 PRI SO—
o @ >( R2> Oz

_kfreéf er +52T )
" pe, \rér "o )T ) (

Suitable dimensionless variables are

x = = kz = and 0= T
"R YT 26, 0RE T PeR ST,
0 12/ e\ 1 %
1) o 2y L
1=x95 xéx(xﬁx>+Pe2 a7 @
with Pe = 35(';:”1‘35.

The boundary conditions of (2) are:

o
8=1 for y— —oc0 and —&:0 for x=0. (3}

o6

—=0 for x=1 and y<O0;
&x
0

=0 for x=1 and y20
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In the standard treatment (e.g. [6] p. 295) of Graetz’

problem equation (2) the last term is ignored, and this

term is indeed of negligible importance when

Pe > 30-50 except in an extremely small region y ~ 0

and close to the wall where the convective term is zero.
The eigenfunctions F(x) of (2} are solutions of

1d/ dF n, AN\
;a(xEE)-((I—X)A_}?)F«G‘ (4)

The boundary conditions of (4) are:

dF
=0 — =0
x dx
x =1 g—g =0 for y<0
and F=0 for y>=0.
The solution of (2} is:

6 =3 AR expliy).
o

Since the boundary condition at x = 1 is different for
positive and for negative y separate sets of eigenvalues
and eigenfunctions must be found for each region
y<0{A.,F.)and y> 0 (4, F,). Each set of eigen-
functions and eigenvalues must be found by numerical
integration, e.g. by a Runge-Kutta method and adjust-
ment of 4, until

9-% =0 (y<O0).
dx 1

Equation {4) is not a Sturm-Liouville problem for
which F, and F; would be mutually orthogonal. Con-
sequently the simple determination of the Fourier
coefficients Ay, or A, fails. Hsu {1] expands both sets
of eigenfunctions F, and F_ in sets of orthogonal
functions f, and f_ by a Gram~Schmidt procedure
and determines the coefficients of f, and f. in the
usual way. Finally the two separate solutions f, and
f- are spliced together at y = 0. The whole numerical
scheme is unnecessarily complicated especially since no
increase in accuracy is expectable by using “true
eigenfunctions™. It is shown in a following section
that the eigenfunction expansion is extremely slowly
convergent for small Pe near y =0 and that Hsu’s
method due to insufficiency of the numerical process
yields qualitatively erroneous results for small y.

It should briefly be mentioned that the numerical
difficulties cannot be circumvented by relaxation of the
boundary conditions (3)to § = 1 at y = 0 as attempted
by Singh [7]. This is an indirect negation of the axial
conduction contribution, which leads to a mathe-
matically inconsequent problem formulation.

E()=0 (y>0 or
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A number of derived quantities are used in the
following:

{a) Bulk temperature Tat distance z:

j peu, TdA = TJ v, pc, dA
A 4

or in terms of dimensionless temperature 6:

- T-T j" ,
f= =41 x(1—x*)fdx {(5)
T,~T 0
0T , %
b N 2Rk ox x=1 Ox x=1 (6)
) Nu=—m=—gmp—= 7
{c) Total heat transfer to wall from z = 0
Jz=j —kg 2nR dz.
0 T lr=R
or
il
. k: =_4J—~ dy (7
Jo mR*(u D pc(T,—Th) 00X |x=1

(d) For Pe—soo By=0)=1 and J=1-8. (8)

3. NUMERICAL SOLUTION

The second order differential equation (2} is reformu-
lated into two coupled first order equations:

a6

oy =¢

dp %0 18/ 06 @)
= = P 2 {— Dynee Pp2 i

dy oyt e(1=x)p—Pe x éx (x 6x>

The operator

10 x_é?.fz
xOx\ Ox

is rewritten in terms of u = x?:

to( a0y _,( 3%
x 0x x@x T2 T )

Introducing x? = u and finding the solution which is
finite at u =0 gives automatic satisfaction of the
boundary condition 86/0x = 0 at x> = u = 0.

The Nth order orthogonal collocation solution of
(2a) is obtained when the residual of both equations is
equated to zero at N values of u which are chosen as
zeros u; of an Nth degree orthogonal polynomial Py(u).
In this paper the zeros of shifted Legendre polynomial
have been chosen. The values of 4 and of ¢ at u; are
respectively 6; and ¢;. Each of the differential operators
86/0u and 8%6/8u* is interpolated at each collocation
point u; by means of the collocation ordinate 6
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{j=1,2,-..,N)and the ordinate Oy.; at 4 = uy .y = 1=

N+1

By this technique the coupled partial differential
equations (2a) degenerate into 2N coupled ordinary
differential equations

de 0

d

i o)
o = Pe*Vp 4P (UB+ A).

Here A and B are the collocation matrices for dé/du
and for d%6/du>.

U and V are diagonal matrices with respectively u;

and 1—g; in the ith main diagonal position.

1t is noted that matrices A and B are different in the
two regions y < Oand y > 0, since the formulas for the
first and second derivatives both contain the wall value

Ox+1. This ordinate is zero for y > 0 but for y < 0 one
must eliminate fy., using the boundary condition

89 N+1
0-“‘«5;”’“ z A[q+1,j8j for u=1.
i=1

This elimination implies a correction of each of the
remaining elements By and 4;;, (i) = (1,2,...,N).

Further details on the construction of A and B are
givenin [8].

The complete matrix formulation of {9) is
d
Q= OB Oy 0
10
Q. for y 20( )

“(arotwmen riv) |
Q= ~4Pe(UB+A) Pe2V) Q. for y<0.
Q is again different in the two y regions since A and
B are different as explained above.
Equation (10) is solved by a standard matrix
diagonalization technique:

- {exi’{Qa»}’)Ws =8, eXplA. }’3511§‘§’0 {y=0) (11a)
exp(Q- y)fre = S_ exp{A_ y)S Mg (y < 0). (11b)
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The diagonal matrices A, and A_ contain the 2N
eigenvalues of respectively Q, and Q.. Q. has N
positive and N negative eigenvalues, Q - has N positive
and N—1 negative eigenvalues in addition to the
eigenvalue 0, which is obtained for v < 0 due to the
zero flux at the wall in this region.

From the boundary conditions {# — 0 for y — o and
g1 for y— —o0) it is known that all collocation
ordinates ; must remain finite for y-» o« and for
¥y —o0.

Consequently the N positive exponentials which
appear in (11a) for positive eigenvalues of Q. ahd the
N —1 positive exponentials which appear in (11b} for
negative ecigenvalues of Q_ must be suppressed by
orthogonality relations between the eigenrows and the
vector ¥, of the dependent variable y at y = 0.

The rows of 83! that correspond to positive eigen-
values of Q. and the rows of 8-* that correspond to
negative eigenvalues of Q. must be orthogonal to .
This yields 2N — 1 finear equations for the components
of yfp. The final 2Nth equation is obtained by the
normalization 8 — ] for y — ~co, and all components
of i, can be found.

In summary the total solution 8(y) is obtained by
diagonalization of two 2N .2N matrices Q. and Q.
and subsequent solution of 2N linear equations by
Gauss elimination. The scalar quantity (y) in (5) is
directly obtained by Gauss quadrature using the 8(y)
values of (11).

4. QUALITATIVE BEHAVIOUR OF THE SOLUTION

The accuracy of the solution (11) to (2) is in principle
determined by the success of the N-point interpolation
applied in the x-direction, since the resulting set of
ordinary differential equations (9) has a closed solution
{11), which is accurate except for round-off errors in the
QR algorithm used to determine the diagonalized form
SAS™! of Q and in the ensuing Gauss elimination
routine for caleulation of ¢,

The magnitude of the negative eigenvalues 4; of Q.
for N = 12 and Pe — o0 are compared in Table | with
the eigenvalues of the differential operator in the
classical Fourier series expansion. When Pe -~ oo all
positive eigenvalues of Q_ increase fo infinity and the
problem collapses into the ordinary Graetz problem

Table 1. Magnitudes of the eigenvalues for the classical Graetz problem (Pe-s c0) compared with the collocation
eigenvalues for y > 0 (negative eigenvalues of Q. in (10}) for N = 12 collocation points

6 7 8 9 10 it 12

Magnitudes of the eigenvalues

k 1 2 3 4 5
Fourier series 7-318 4461 1139 2182 3485 5139
Twelve point  Difference between eigenvalues (Collocation-Fourier)
collocation 410772 51071 3,107% 2.107% 02 105

711-2 9405 1201 1495 1820

Magnitude of collocation eigenvalues
153% 3627 12243 81559 4-1.10°

2178

8277
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F1G. 1. First three negative eigenvalues of Q, {equation 10) as function of Pe-number.
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F1G.2. Butk mean temperature § defined by equation (5) as a function of axial position
y = z/RPe for discrete values of Pe.

with 8 =1 at y = 0. The first two eigenvalues of Q.
are equal to the “Fourier eigenvalues” to within the
accuracy of the QR algorithm. This means that the
solution 8(y) or 8(y) is identical to the Fourier series
solution and hence to the exact solution for “large” .
This “far downstream™ accuracy of the collocation
solution was first observed by Villadsen and Stewart
[3] for a specific LPDE, and has since then been
discussed by Villadsen {[9] Chap. 1.7 and 3.1}, by
Finlayson ([10] Chap. 5) and by many others. It will
not be further commented in this paper. Rather the
attention of the next section will be focussed on the
accuracy of the series solution in the region y ~0
where a comparison with boundary layer solutions will
be made. The remainder of this section will be devoted
to a qualitative discussion of the solution for finite Pe.

The first three negative eigenvalues of Q. are shown
in Fig. 1 as functions of Pe. For Pe > 50 they have
practically the same values as in the limiting case
Pe - o0,

Figure 2 shows that 8(y) is also practically inde-
pendent of Pe for Pe > 50 except in a small region
close to y = 0. The gradient 88/0y is infinite at y = 0
for Pe — oo and large but finite for Pe = 50. It rapidly
approaches zero for negative y values. It is noted that
a given f-value is obtained at an axial position z/R
which is proportional to Pe when Pe 2 50. Axial
conduction is then negligible and Pe serves only as a
scaling factor for axial distances,

In the Pe range 1< Pe <10 {4}, |4} and 144]
rapidly decrease and diffusion into the upstream section
is noticeable. For Pe < 1 the three eigenvalues become
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F1G. 3. Nusselt number defined by equation (6) as a function of y for discrete
Pe-values.

proportional to Pe: — A, = p; Pe, where p, is the kth
zero of Jy(p) i.e. 240, 581 —(see Appendix, Section b2).
The positive eigenvalues of Q_ also become pro-
portional to Pe: A, = p, Pe, where p, is now the kth
zero of Jy{p).

The heat sink downstream from y = 0 will force 6 to
zero for every y when Pe — 0. If, however, the Fourier
coeflicients and the eigenvalues are divided by Pe a
well defined final solution for Pe— 0 results. The
behaviour of this solution for small z/R, which is the
proper axial coordinate in this case, will be studied in
Section S.

Figure 3 shows Nu(y) defined by (6) for various
Pe-values. A similar figure is given by Hsu ({1] Fig. 3),
but while Hsu’s curves for Nu{y) apparently approach
a finite value for y — 0 when Pe < 10 our curves show
that Nu ~ {yPe)”*? for Pe < 10 in much better agree-
ment with some results of Newman [11] which are
discussed in the next section. Thus the collocation
exponential series must have much better convergence
properties than the “true” Fourier series for small y
even though the large eigenvalues of Q are blatantly
different from the differential operator eigenvalues as
exemplified in Table 1.

The far downstream behaviour of Nu(y) is as ex-
pected identical by the two methods:

For Pe-» oo Nu(y 2 1)~ —%4; where 4; = the first
negative eigenvalue of Q., but as Pe decreases from
infinity to zero the Nusselt number increases from
3-656 to 4-180 while | 4, | decreases from 7-31 to zero. A
perturbation analysis which explains these results is
given in Appendix A.

5. THE CHARACTER OF THE SOLUTION FOR SMALL y

Newman [12] has extended Leveque’s similarity
solution of (3} for Pe — oo to the following three terms:

J{Pe - o0} = 1 ~0 = 4-0698 y**
— 24y —0-4454y*3 10(y53). (12)

The first term represents J with an error less than
5 per cent for y < 1073,

Figure 4 shows J computed by 12 and 30 terms of
the Fourier series (broken curves) compared with the
solution by {12) and by a 12 point collocation solution
(full curve). The truncated Fourier series is obviously
not applicable for detection of the boundary-layer
solution J ~ 4-0698y%* while the collocation series
with N = 12 closely follows (12) at least down fto
y =103 where the first term of (12) is accurate to
within 1 per cent. In the limit y — 0 the collocation
solution eventually breaks down, since the infinite slope

20

for y=0
Ox x=1 or

cannot be represented by polynomials, but it does a
much better job than the Fourier series for which
convergence to J is found empirically to be

In{J(Fourier)— J{true)) ~ constant. N1/

where N is the number of terms in the series and the
constant depends on y. More than 100 terms should be
taken to obtain the same accuracy at y = 2:107% as the
12 point collocation solution.

The explanation is found in the rapid increase in
magnitude of the eigenvalues 4, of Q, in Table 1. The
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Fi1G. 4. Heat flux J defined by equation (7) as a function of y for Pe - 00. Curve (c}:
12 point collocation and Newman’s formula equation (12). Curves (a) and (b):
Truncated Fourier series with twelve and thirty terms.

“Fourier eigenvalues” are approximately given by
—(4k—%)? [11] for k > 7-8, while the largest “colloca-
tion eigenvalue” is —4-16.10% for N=12. It is a
prerequisite for an accurate eigenfunction series solu-
tion with a given number of terms N that —Ayy > 1
and this is not satisfied for y = 2:10" by, e.g.a 12 term
Fourier series. The expansion coefficients 4, decrease
to zero with increasing k at about the same rate for the
collocation series and for the Fourier series, but the
much larger spread of collocation eigenvalues for
k > N/2 makes the collocation series much faster
convergent for small y. The large y convergence
behaviour is fast and almost identical for the colloca-
tion series and for the true Fourier series due to the
equivalence of the (A4,, 4;) in the two series for small k.

It was noted in the previous section that the first
three cigenvalues became proportional to Pe when
Pe < 1. The same numerical relation is also obtained
for larger Pe, but now only for the larger 4,, since for
increasing k the term Ai2/Pe? eventually dominates the
factor of F in (4). Hence the large eigenvalues of (4)
converge to |A,| = Pekn since the large zeros of Jo(p)
and J;(p) occur with a distance of z. This means that
the convergence of the Fourier series for small y
becomes even more poor when Pe is finite, since the
largest eigenvalue with N terms is proportional to N
and not to N? as was the case for Pe — co. An analysis
of Hsu's eigenvalue data ([1] Table 1} shows that
Ay (= —2p2 in the table) = — Pe{nk—1-276) to within
0-005 per cent for k& > 4 when Pe = 1-5 and to within

2 percent for k > 9 when Pe = 3. A similar analysis of
the collocation eigenvalues for N > 11 shows that the
largest negative eigenvalue of Q. is represented by
Ay = —1'272Pe(N +0-5139)* to within 0-002 per cent
irrespective of the Pe value (02 < Pe < 300). This
almost schematic determination of Ay is expectable,
since Q.. has a fixed structure when the collocation
points u and the order of approximation N has been
chosen.

The main observation is again that the open-ended
Fourier series consists of mutually independent terms
which are determined one by one starting with the
term that describes the far downstream behaviour of the
solution, while the Nth order interpolative collocation
scheme simultaneously determines the parameters of N
orthogonal trial functions such that the remainder is
incorporated also for finite y. This has no detrimental
effect for large y since the first eigenfunctions are almost
identical by the two methods, and at small y where the
remainder of the N term Fourier series is large a very
beneficial effect is noticed due to the better focusing
power of the collocation series.

Figure 5 presents some numerical results obtained
with N =17 collocation points. The quantity J of
formula (7), i.e. the total heat transfer to the tube wall
from y = 0 to a given y value is studied as a function
of y at discrete Pe values.

The circled points for Pe=0-2 show computed
values similar to curve ¢ on Fig. 4. A straight line
portion of the curve can be found in the log-log plot
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FiG. 5. J as a function of y for various values of Pe. The circled points indicate the range
in which a seventeen point collocation solution fits the straight lines.

but while as a straight line is a valid representation of
the collocation results in Fig. 4 at least to y = 1073 it
will not be valid for y < 0-01 even with 17 collocation
points. This is due to the slow convergence of an
exponential series representation of J for y~0
especially for small Pe. Since a true Fourier series has
a weaker convergence than the collocation series the
true relationship J ~ y'/? for small y which is clearly
observed on Fig. 5 could not have been found by means
of a Fourier series.

For J > 0-5 the straight line relationship does not
either hold, in this case due to failure of a representation
of the computed results for large J by the first term of
a penetration theory series similar to (12) which only
holds for Pe — .

The other lines on Fig. 5 are drawn through the
straight line portions of curves computed for other Pe
values using N =17. The discussion for Pe =02
implies that the straight lines can be extended to y = 0,
since the deviation of the computed results from the
straight lines for small y is explained by a failure of the
collocation solution.

Consequently the results on Fig. 5 can be used to
deduct penetration theory results even though they are
based on an expansion of the solution which is un-
suitable for small y.

For Pe < (-5 it is seen that J is proportional to
{(Peyy'/2 or J = 1-5(z/R)"? for J < 0'5. It is expected
that J is independent of Pe for Pe — 0, since the
convective term in {2) becomes insignificant in com-
parison with the axial diffusion term when Pe— 0.
The quantitative relationship which is found between J
and z by an empirical analysis of the computer results

is of some independent value and it could probably be
confirmed by a technique similar to the one used by
Levéque in the derivation of the first term of (12) for
Pe - 0.

For 15 < Pe < 3 it is obvious that J is dependent
on Peas well as on z/R but the proportionality between
J and (z/R)"/? still holds.

For 5 < Pe < 30 practically the same curve is ob-
tained which means that

2 1/2
Jocyt?t or Joc (Pe ') (E) .

For Pe > 30 the elliptical nature of the partial
differential equation is discerned only in a very small
region near y = 0 since the axial conduction term of
(2} is negligible outside this region. Outside this region
where J oc y/? the Levéque solution J = 4-07y%3 of
(12) holds until y ~ 2:1072%,

Newman [11] first detected the Joc y'/? solution
behind the Levéque solution for large but finite Pe by
using a singular perturbation technique inwards from
the Levéque solution. It is obvious that his resuit
J =4:24Pe4y11? for y <1073 behind the Levéque
solution is extremely difficult to detect by an analysis
of numerical data based on an exponentially decreasing
series and only the “Levéque” portion of the results are
shown on Fig. 5 for Pe = 300.

6. SUGGESTIONS FOR FURTHER WORK
The previously published examples of solutions of
linear partial differential equation (LPDE) and the
more general observations based on the eigenvalue
spectrum made in the present paper suggest that the
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solution of these mathematical models by a combina-
tion of orthogonal collocation and matrix methods can
give results of equal applicability for large and for
small values of the unrestricted independent variable.
This means that the similarity or singular perturbation
solutions, which are often quite hard to develop by
semi-analytical methods, can be avoided at least for
qualitative studies of the solution.

The matrix methods of Section 3 are quite generally
applicable for any LPDE and also for non-linear
equations if they are coupled to an iterative process,
e.g.a Newton—Raphson method. An interesting variant
of the collocation method, the so-called spline-
collocation [13], can be used to improve the accuracy
for small y. The profile 8(y) is very steep near x =1 for
small y and a global approximation of 6(x) by poly-
nomials is not accurate—the results on Fig. 5 for
N =17 illustrate the failure of the method for small y.
If on the other hand the x interval [0,1] is split into
two subintervals of which one extends from x =1 to
xs Where x, may be, e.g. 0-8 one may apply collocation
to each interval, splicing the two parts of the profile
together at x; by demanding continuity of § and 86/0x.
Preliminary investigations on this example show that
a total of 7 collocation points of which 3 are allocated
to the small interval {x,,1) and 4 to (0, x,) gives the
same accuracy as a global method with N =12
Further applications of this method which may be very
useful in many examples with steep profiles are given
in 131

Heat transfer to pseudo-plastic materials in tubes

(vz = (1 +;%> 0> (1—x") with M> 2)

may constitute an interesting example where axial
conduction plays a significant role. Brinkman’s prob-
lem of viscous heating of fluids flowing in small bore
tubes under large pressure gradients is another example
where preliminary calculations show that axial con-
duction has an appreciable effect. Both examples are
solved by an exact repetition of the algorithms in
Section 3.
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APPENDIX A

In this appendix a perturbation solution of equation (4)
is developed. The main results are formulae (9A) and (124)
for the far downstream Nusselt number Nu, when the
Peclet number is large or small. The numerical value of
Nu,, can easily be obtained with a low order collocation
method and in this respect nothing new is offered. It is on
the other hand a temptation to develop semi-analytical
explanations for the numerical behaviour of the solution,
which is known with many digits accuracy from the
collocation method—in fact this “development of formulae
by hindsight” is probably the most valuable feature of any
accurate numerical method.

Formulae (5A) and (6A) that represent the general results
of the perturbation method have a wide applicability for
approximate solution of any boundary value problem, which
is formulated as a perturbation to a Sturm-Liouville
problem.

(a) General treatment

Let a Sturm-Liouville equation be perturbed by af(x, I)F
where o is a small constant and fix,4) is a specified
function of x and 4

d

dF X
r (p(x) a) +{g()+ A F +af(x, BF = 0. (1A)

It is desired to find the first eigenvalue A and the corre-
sponding eigenfunction F{x) as perturbations to the first
eigenvalue 4; and eigenfunction Fi(x) of the simplified
problem with « = 0.

A=2l;+ai* and F=F +oF* (2A)
The whole set of eigenvalues and eigenfunctions {4;, Fi{x)}
of the unperturbed problem is assumed to be known.
Equation (2A) is inserted into (1A) and terms in o2, ..., are
discarded.

dF*

d
dx (P(X) E) +A*Fyr(x)

+Hgl)+ArNF* +x, W)F =0 (3A)
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F* is expanded in a Fourier series on the set {F!}
i=2,.... and inserted into (3A)

F* =Y 6Fx)
2

and
d dF* i
- (P(x) d‘;) = - z clg(xy+ A r(x)}F

dx 2
MR+ Y qld —Ar(x)F+f(x. )F =0 (4A)
2
A¥ and c; are found from (4A) by multiplication with respec-

tively F; and F; followed by integration over the ortho-
gonality interval (a, b)

b b
A J‘ rx)Fdx = — f Jfix, A FEdx

a

(5A)

b b
cjul—).,»)[ Hx)FRdx = — j f(x. A)F Fdx.  (6A)

Ja a

Since all integrals in (SA) and (6A) can be found either
analytically or by quadrature these equations provide ex-
plicit values for 4* and ;.

(b) Application of (5A) and (6A) to the extended Graetz
problem
{1} Large values of Pe.

d dF N A2
—tx—)-al- —xF =0. (7 4
dx(x dx) Afl—x )xF+Pezx (7A and 4)
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The asymptotic Nusselt number for large Pe is obtained by
integration of (7A) with F = first eigenfunction

dF FE [t 2
—— =—— 1} xFdx—# x{1 —x}F d;
dx Pez.{eY * A.!O MmOy
dF
_2
dx x=1
Nugg = ——n
F
12 1 1
z<—.f dex—lj x(1~x2)Fdx>
P(’Z‘,() Q

i
4J' x{l —xH)Fdx

]

]
+

A ,12 1 / 1
- WM,[ xF dx/f x(1~x3)Fdx
e !

2 2P ), 0
R A C S L ‘
~ _§+P~;(—?+~2—L xF; dx}j Gx(i——xz)F, dx
Ay 4487
S Pl 94
2 pe? (OA)

Table 2 shows that A as well as Nu,, are determined with a
high accuracy for Pe> 30 and that the perturbation
formulae give a tolerable accuracy even at Pe = 5. Note that
the approximation Nu, = —34 which holds for a true
Sturm-Liouville problem is qualitatively in error, since the
perturbation of the first eigenfunction (last term in 9A) is
larger than the perturbation A*/Pe? of A;.

Table 2. The first eigenvalue for y > 0 and the asymptotic Nu-number for large Pe by
collocation and by perturbation (8A, 9A)

Pe 100 30 10 5
~A (17 point colloc.) 7-3069064 7-2406920 6744049 568967
-~ A by (8A) 7'306894 7-23922 6-6436 463
Relative difference 1-7.107¢ 2:0.10°¢ 13,1072 014
Nu (17 point colloc.) 36572414 366168 369518 37672
Nu by (9A) 36572421 366178 370166 38363
Relative difference <10°¢ 2:5.107° 1-8.1073 2.1072

In the notation of (3A):

Mxy= —x{(1~x%, « and  f{x, i) = xii.

TP
The eigenfunctions {F} of (7A) with « =0 are Graet?’
functions and the eigenvalues for y > 0 are

(A} = —7-3135869, —44-60946, ...,

] o
= 1-2512254} = 66-926.

The integrals can either be determined from the power
series for F; or by Gaussian quadrature using the collocation
ordinates @(y) for y 2 1 and Pe — co.

Hence the first eigenvalue of (4) is

66-926 66-926
Lz dy s = ~T7313 +—.
Az P 3135869 Po

1 1
i ;—j‘ Afode/j x(1 —xH)FEdx
i

(8A)

(2) Small values of Pe. Equation (4) is rescaled by taking
an axial coordinate y = z/R:

dx

o = Pe,

d dF
—— (x »—~> + A%xF — APex(l —x*}F =0
\dx

and  f(x,A) = —Ax(1—x?), (104)

r(x) = x,
The eigenfunctions {F} of {10A} with « =10 are Bessel
functions Jo(4;x) where A; are the negative zeros of Jo{p),
A = —2-4048256, i, = —5-52 ete. and A% = (A; +al*)? ~
AZ 4+ 20k, A%

Consequently the development from (2A) to (5A) yields

I

1
A* = %J x(1 ~,\3)Jg()l,x)dx/j

1

xJZ (A, x)dx = 0-39095
o 0

= —2-4048256 +0-39095 Pe. (11A)
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The coefficients c; of (6A) are

3
1 J ﬂ.lx(l "xz)Jo(A.lx)Jo(ij) dx

o= ° = Zh 'r x(1 = x2)Jo(Ay x) oA, x) dx.
T r JHA)GE =23 Jo '

xJ3(A;x)dx
0

The first four c; are found by numerical quadrature:
10%{¢;} = {2-5895, —0-2320, 0-0515, —0-0170}

Nu,, is obtained in the same way as for large Pe:

dF 1 1
- =J Aszdx—if Pex(1—x?)Fdx
dx |x=y 0 [
Ped 12 (1 1
Nig= — 242 | xFdx /| x(1—x)Fdx
2 2 ) o

1 w 1
J xJo(Ax)dx+PeY ¢; | xJo(4;x)dx
0

0 2

Pel N A2+21,A*Pe

2 2 1 © 1
f x(1—xH)Jo(A x)dx+ Pe Y ¢; J‘ x(1 —x%)Jo(4;x) dx
o

2 o

Pel N A2 +24,A*Pe I, + PeS,

2 2 L+ PeS,
2 A MAML AR(S, SI,
~Z24Pe| -2+ +o {22t
2L N\ 2 L, 2\,

t Ji(4;
L= J xJo(A;x)dx = l*;’)

[} J

1

4

I = j x(1=xH)Jo(4;x)dx = PJl(lj)
[} 1

8, = —0-16815.1072 and S, = —0-02137.10°2
Hence the value of Nu,, for Pe = 0 is

P A b
—--=—=4-180654
215, 8
and the perturbation formula is
Nu ~ 4:180654 + Pe(1-202412 — 1359292 — 2:6580 . 10~ 2) = 4-180654 — 0-1835 Pe. (124)

The perturbation is again seen to result as a small difference between larger terms, and the inclusion of several terms of the
perturbed eigenfunction is necessary. The accuracy of (11A) and (12A) is from Table 3 seen to be very satisfactory for
Pe < 1 and acceptable up to Pe ~ 1-5.

Table 3. The first eigenvalue for y >0 and Nu, for small Pe by collocation and by perturbation
(11A, 12A). Note: Eigenvalues of this table are the eigenvalues of (4) divided by Pe

Pe 0-05 02 05 1 15
— A (17 point colloc.) 2-38535 2:32784 221695 2:04437 1-8869
—Aby(11A) 238527 2:32663 220935 2-014 1-62
Relative difference 33.10°° 52.107¢ 34,1073 1:5.1072 013
Nu (17 point colloc.) 4-171561 — 4-09685 4-02735 396985
Nu by (124) 4-171479 4-14395 4-08890 3997 3905

Relative difference 19.1073 — 19.1073 7-5.1073 1-6.1072
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M. L. MICHELSEN and JOHN VILLADSEN
LE PROBLEME DE GRAETZ AVEC CONDUCTION THERMIQUE AXIALE

Résumé—Le probléme de Graetz avec conduction thermique axiale est traité comme illustration d’une
méthode de résolution d’une classe trés importante d’équations linéaires aux dérivées partielles. La
meéthode est une combinaison de la collocation orthogonale et de la diagonalisation de matrice. La raison
de la trés grande précision, obtenue par collocation, est discutée a partir des valeurs propres de
'opérateur de collocation. On trouve qu'elles croissent plus vite que les valeurs propres vraies pour
k > N/2, ou N est le nombre de points de collocation et ceci permet aussi une grande précision dans
la “région de pénétration” de la solution ou les séries de Fourier sont lentement convergentes.

On développe en appendice des formules explicites donnant le nombre de Nusselt asymptotique pour
un nombre de Péclet soit grand, soit petit. Elles sont basées sur une perturbation des fonctions propres
du modéle simplifié, avec un nombre de Péclet infini ou nul.

On propose des variantes du probléme de Graetz qui peuvent étre résolues par une répétition des

calculs présentés.

DAS GRAETZ-PROBLEM MIT AXIALER WARMELEITUNG

Zusammenfassung—Am Beispiel des Graetz-Problems mit axialer Wérmeleitung wird ein Losungs-
verfahren fiir eine wichtige Klasse linearer partieller Differentialgleichungen entwickelt. Die Methode
ist eine Kombination aus orthogonaler Kollokation und Matrix-Diagonalisierung. Der Grund fiir die
durch die Kollokation erreichte sehr hohe Genauigkeit wird anhand der Eigenwerte des Kollokations-
Operators diskutiert. Es zeigt sich, daB3 diese viel schneller anwachsen als die wahren Eigenwerte fiir
k > N/2—mit N als der Anzahl der Kollokations-Punkte; dies erlaubt eine hohe Genauigkeit auch in
der “Durchdringungsregion” der Losung, in der Fourier-Reihen langsam konvergieren.

Explizite Ausdriicke fiir die asymptotische Nu-Zahl fiir groBe und kleine Pe-Zahlen werden in einem
Anhang aufgestellt. Sie basieren auf einer Storung der Eigenwerte des vereinfachten Modells mit
unendlich grofien oder sehr kleinen Pe-Zahlen. Weiter werden einige Varianten des Graetz-Problems,

die durch eine Wiederholung der vorliegenden Berechnungen gelgst werden konnen, vorgeschlagen.

3AZIAYA T'PETUA INMPU OCEBOMW TEIMJIOITPOBOAHOCTU

Annotauns — Vicnonb3ys 3apauy I'perua npu ocCeBoil TEIIONPOBOLHOCTH B Ka4yecTBe IIpHUMepa,
pa3paboTaH MeTOI peLIeHHs BAXHOTO Kjiacca JTHHEHHbIX N1 depeHIMaNbHbIX YPaBHEHUH B YaCTHBIX
MIPOM3BOAHBIX. MeToa NpeacTasaseT coboit KOMOMHALIMIO OPTOTOHAIBHBIX KOJIJIOKALIMI U MaTPHYHOM
JMaroHanu3aluuy. BBICOKas TOYHOCTB, IMOJIy4YEHHAs! MYyTEM KOJUIOKAUMH, OOBACHSAETCA C MOMOLIBIO
coBCTBEHHBIX 3HAaYeHH oneparopa kostokauuit. Halineno, 4ro cobcTBeHHble 3HAUEHUA orepaTopa
KOJTOKALIMii yBENHYHBAIOTCA ropa3ao ObICTpee, YeM HCTHHHBIE COOCTBEHHbIE 3HAYeHUA IpH K > N/2,
rae N — 4MCII0 TOYEK KOJIIOKAUMi, YTO TakKe NPUBOAUT K OOJbLIOHA TOYHOCTH B «obiacTu mpo-
HUKHOBEHHS» PEIEHHs, B KOTOpOM MemieHHO cxoauTtces psn dypee.

B NpUIOXEHHH TIOIy4eHb GOPMYJIBl B SBHOM BHAE A aCUMNTOTHYeckoro yucna HyccenbTa
npu Gonblwnux M Masbix yncnax [dekie. OHM OCHOBAHBI Ha BO3MYUIEHHM COOCTBEHHbIX (yHKUHHK
YIPOILEHHO Moenu npd OeCKOHEMHOM HIIH HyJeBoM vucie Ilekne.

INpeanaraercst HECKOJBLKO BAPHAHTOB 2adaud I'perTla, KOTOpbIE MOXHO PEIIUTH IYTEM MOBTO-

DEHHsT HACTOSALLUMX PACYETOB.



